
17
COMMAND AND CONTROL

PROBLEM DESCRIPTION

Command and control is the classic feedback control loop that is seen in most engin-

eering applications. A feedback control loop is a continuous process of state

measurements, analysis, decisions, and commands in an effort to change the state

of the system. Typically the goal of the analysis and commands is to keep the

system in a stable, well-known state commonly referred to as a “steady state.”

I will discuss two basic applications that share one common characteristic; the

systems consist of many devices (e.g., computers, sensors) with the requirement

to collect information from the dispersed devices and perform an analysis on the col-

lected information. Command-and-control loops continue the process of immedi-

ately processing and analyzing the data, with the resulting adjustment of the

system state as the final outcome. Figure 17.1 illustrates this state management

process for the command-and-control loop function.

We can consider a subset of command-and-control loops to exist when the

control commands of the feedback loop are not needed. Monitoring weather, for

example, utilizes a vast network of sensors, weather stations, and other facilities.

The information from the sensors is recording weather conditions for analysis.

The speed with which the data are collected and analyzed has a direct impact on

the required actions that need to be taken depending on the final results. However,

in some cases the resulting actions may not necessarily be to issue a command back

to the sensors but rather to issue a storm warning to the public.

191

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.

In the following discussions, the terms sensor, device, and computer are used

interchangeably.

SOLUTION ARCHITECTURE

There are two possible architecture implementations for the command-and-control

(command/control) loops that will be discussed and compared. In the first case,

I will analyze the process where there is no data grid and then expand to the use

of the data grid in the second case. The procedural steps in command/control
loops are independent of the implementation, therefore enabling a direct comparison

to the efficiency gained by using a data grid. The procedural steps normally outlined

for the command/control loops are as follows:

1. Collection of data from the remote devices

2. Preparing the data for analysis, formatting, and inserting the data into storage

3. Analysis of the data

4. Decision process with input from the analysis process

5. Formulation of commands supporting the decisions of step 4

s1 s3

s2

System state

measured

State stored

Decisions

made

Command and control

(feedback control loop)

R
e
m

o
te

s
e
n
s
in

g

C
o
m

m
a
n
d

a
n
d
 c

o
n
tr

o
l

Analysis

Commands

issued

System state

changed

Figure 17.1. Command-and-control loop flow.

192 COMMAND AND CONTROL

6. Issuing of commands

7. Delivery of commands out to the respective remote sensors

8. Repetition of the process, thus looping back to step 1

Command and Control Without a Data Grid

In step 1 as identified above, the collection of data from the sensors is always a good

place to start. In a homogeneous sensor environment, the sensors are supplied by the

same manufacturer or have a standard interface on which all manufacturers agreed.

Therefore the data collection processes are uniform. However, in the more realistic

scenario the sensor environment is heterogeneous and for each sensor type, manu-

facturer, and interface there are multiple sensor interfaces and data collection

processes. The sensor collects data that need to be shared with other parts of the

system for processing. To extract the data, one must know how to physically connect

to the sensor, understand its communication protocol, and understand its data

format. With this information and the knowledge of the larger systems networking

characteristics, “adapters” must be created to collect the data from the sensor and

deliver them to a common storage for analysis. Conversely, this same process

must be done in reverse in order to send commands (if necessary) back to the sen-

sors. Most likely, the input data process to the sensor will be different from its output

process. For the purposes of simplifying this discussion, the physical connectivity

for input data is the same for output sensor data. However, there could be a separate

protocol and data format for the input process and data stream. Keep in mind that

. Data are moved from one system to another; the message that is transported

over the network must be marshaled before transmission and then unmarshaled

on receipt.

. In a heterogeneous environment, the input/output data process must be dupli-

cated for each different sensor type, manufacturer, and interface.

Once the sensor connectivity is established, the collected data must be stored

somewhere on their receipt. For example, the storage facility can be a file system,

database, or even the memory space of the analysis process itself. Odds are that

the data format from the sensor will not be the same as the input data format required

by the analysis process. Therefore a level of data translation must take place. If the

data are to first be placed in a file system or database for later retrieval by the analy-

sis process, then it is safe to assume that the data representation of the storage

medium is different from that of the analysis process. Therefore the sensor data

must go through two data translation processes: sensor to file and file to analysis.

As the process continues, one can see the large number of required data transform-

ations that take place. Figure 17.2 shows this process without the use of the data grid.

In Figure 17.2, the triangles represent the sensors that interface to the data collec-

tion process and command distribution process. Once the data are collected and

stored, the analysis process begins, followed by the decision and finally the

SOLUTION ARCHITECTURE 193

formulation of the command. The command is than sent out to the external sensor

environment. Physically, the command/control loop system may be a single

system that we are representing as three logical components. Analysis is performed

directly against stored data. The analysis process extracts the input data from the

data store and performs its operations with the resulting output feeding the decision

process. Commands are then issued through a communication mechanism specific to

the topology of the underlying communications network of the command center and

the sensors. The process of issuing the commands to each individual sensor is similar

to the one described for the data collection, which involves connectivity, protocol,

marshaling and unmarshaling, and data format translations.

Command and Control with a Data Grid

Applying the same system as described above, the data grid architecture simplifies the

process, eliminating the number of “moving parts.” The data grid encompasses the

sensors and the command center where the analysis/decision/command process

occurs. The sensors place or put their data directly into the data grid, therefore

making them immediately available to the analysis process, completely bypassing

the storage step and many of the data translation steps required without the data

grid as described in the other scenario. In addition, the data grid can also serve as

the storage medium, unless the raw sensor data need to be persisted in a database

for long-term or future reanalysis. Should long-term persistence be required, the

data grid can assume the responsibility of persisting the data to the proper storage

device (e.g., file, database), a process independent of the analysis and command paths.

The result is the elimination of the multistep process of collection, local store,

packaging, download, unpackaging, storing, and finally reading into the analysis

programs with a single step of “writing to a data grid.” The issuing of commands

Command and control

(feedback control loop)

Storage Analysis Decision Commands

Data collection
Command

distribution

1

2

3
5

6

7

8

4

Figure 17.2. Command-and-control loop without a data grid.

194 COMMAND AND CONTROL

can also be done via the data grid. Commands can be put into an area of the data

grid from which the remote sensors can read. Again, taking the diagram of the

command/control loops as represented in Figure 17.2 and architecting with the

data grid results in the scheme shown in Figure 17.3.

Observations and Comparisons

The key points of differentiation between the data grid and non-data-grid implemen-

tations are data collection, translation, availability, and finally connectivity for trans-

port of information to and from the sensors. Now the workflow process is simplified

to the schematic representation in Figure 17.4, with the data grid as an integral part

of the system.

Data grid

Storage
Analysis Decision Commands

1

2

3

5

6

78

4

Data immediately

available for analysis in

data grid

Commands

immediately

distributed in

data grid
Storage

Figure 17.3. Command and control with a data grid.

s1 s3

s2

Collection

Analyze

decision

Command

Figure 17.4. Points of comparison.

SOLUTION ARCHITECTURE 195

Without a data grid, the solution is highly customized and an artistic process. The

variable parameters of the process are sensor type, location, data collection and

storage at the sensor, and connectivity to the rest of the network. For example, if

the sensor is a Unix computer and you are interested in its operational state, then

the information in the “syslog file” is of value. Data collection for these data can

be via a customized protocol or a well-known one such as a FTP. This is a non-

real-time batch process where data are accumulated and periodically downloaded

to a central repository.

Issuing of commands back to the sensors is a separate process but can leverage

similar methods used in data collection. For example, the command files are

FTPed so as to be read by the sensor; or command messages may be passed via a

networked messaging or queuing protocol. The point is that these are all customized

methods of collecting and issuing commands between sensors and the control center

and are usually nonstandardized.

A side-by-side comparison of data grid versus non-data-grid implementations of

command/control loops shows that there is an elimination of the complex moving

parts once the data grid is architected in the solution. Thus, there is an increased effi-

ciency since the time is drastically reduced from the point that data are available

from the sensors for analysis. Table 17.1 identifies the various components that

are needed in the two scenarios:

DATA GRID ANALYSIS

I will make some assumptions regarding the topology of the command/control
system that we will analyze as part of this exercise. The complete sensor community

is large in number and distributed across large geographic areas. At each location

there is only one or a small number of collection sensors. The sensors are hetero-

geneous in nature as outlined in the earlier discussion in this chapter. The data

atom size for sensor input and output is small in size, let us say on the order of

TABLE 17.1. Points of Comparison Between Data Grid and Non-Data-Grid

Implementations

Point of

comparison Procedure steps

Non-data grid

implementation

Data grid

implementation

Collection Collect data Yes Yes

Translate data Yes Yes

Transport data to central store Yes N/A
Translate data for database Yes N/A
Store in database Yes N/A

Analysis Analyze Yes Yes

Decision Yes Yes

Command Store Yes Yes

Forward Yes N/A

196 COMMAND AND CONTROL

100 bits, and the data transfer intervals are on the order of minutes. However, this is

just one part of the system processing requirements. The second part revolves

around the data analysis and the command process. Even though each sensor pro-

duces a small amount of data per update, the sensors are large in number and the

total sum of the data that needs to be analyzed, in sum, is quite large. The analysis

process can be quite complex, thus making it very similar to the data mining and data

warehouse use case as highlighted in earlier chapters. In this situation, the data col-

lection aspects of the system are very similar to those of the geographic boundary

use case of Chapter 16. Both are presented below with some customization for

the particular case at hand, command/control loops.
The previous example for the data warehouse and OLAP analysis is as follows:

. Application Definition Equation for the Distributed Environment

OLAPProcess

Work(),

Data_ output(), Data_ S1(), . . .Data_ Sn(),

Time(),

Geography(),

Query()

0

B

B

B

B

@

1

C

C

C

C

A

where

Work(atomic, nonsynchronous)

The output data surfaces are smaller for the command/control loops in com-

parison to the data surfaces that will be analyzed from the data warehouse.

Data_ output(‘‘x” kbits,‘‘y” bits, transactional, nontransient, queryable)

Data_ S1(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)

Data_ Sn(‘‘z” Tbits,‘‘k”Mbits, nontransactional, transient, queryable)

The ability to run complex analysis over large data sets in short periods of time

provides the command/control process with a better view into the system state,

demands on the system, including its current state, and its ability to meet the

demands. Armed with better and in-depth quality views, the command/control
process can target specific “in-time” adjustments to the system to meet

the demands placed on it. This command/control OLAP process is to run in

the confines of a single data center, and the applications requirement to analyze

(complex queries) any of the data sets is not essential to the business.

Time(Near-Real-Time)

Geography(DataCenter, 1GbitEthernet)

Query(complex)

DATA GRID ANALYSIS 197

. Data Management Policies

DataDistributionPolicy ¼ DDP

DataWarehouse_DDP,

DWRegion,

Scope(ALL),

Pattern Automatic, Random

DWDDPPattern,

WhiteNoise(),

NULL,

NULL,

NULL,

NULL

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The data replication policy shows a lower number of replicas per data atom

as the overall size of the data in the data grid is quite large. Each replica

increases the overall storage capacity of the data grid by the size of the data

loaded from the data warehouse. The downside to a lower replication size

per data atom is resilience of the data in case of a failure. These tradeoffs

must be considered in each use case and architecture variation.

DataReplicationPolicy ¼ DRP

DataWarehouse_DRP,

DWRegion,

3,

Scope(ALL)

0

B

B

@

1

C

C

A

SynchronizationPolicy ¼ SP

DataWarehouse_ SP,

DWRegion,

Scope(Boundary(‘‘intra”), NULL),

Transactionality(‘‘nontransactional”),

LoadStore(List(‘‘DataWarehouse_DLP”), NULL),

Events(NULL)

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Use of events to coordinate data consistency between the command/control
loops and the data grid are managed via events or triggers from within the

data grid to or from the sensors. This assumes that the EII functions of the

system remain as part of the command/control loops. Should one choose to

transfer the EII responsibility from the command/control loops to the data

grid, then the data grid event notification policies will need to be established

to maintain data consistency.

EventNotificationPolicy ¼ N=A

The data load policy is required in this use case, and if the implementation

offers the business application, the data grid as the medium to data loads and

data pushes to the sensors. Then the data load policy will manage the sensors’

198 COMMAND AND CONTROL

interface of extract and load result sets into the data grid.

DataLoadPolicy ¼ DLP

DataWarehouse_DLP,

MCRegion,

Granularity(Grouping(1), N=A),

DataWarehouseAdapter()

0

B

B

@

1

C

C

A

DataStorePolicy ¼ N=A

Geographic boundary analysis may be applied to the command-and-control loops:

. Application Definition Equation for a Distributed Environment

GeoBoundaryProcess

Work(atomic, nonsynchronus),

Data(MultiGbits,100bits, nontransactional,

transient, queryable),

Time(near-Real-Time),

Geography(WAN),

Query(Basic)

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

. Data Management Policies. The data distribution and replication policies for

this scenario may need to be a manual pattern as opposed to an automatic

one. While each sensor is a node in the data grid, it is safe to assume that it

will not be available to contribute storage capacity to the data grid, thus elim-

inating it as a possible data replication and distribution node for other sensor

data. However, for this analysis, we will use the same white noise distribution

policy as before. It is left to the reader as an exercise to determine the physical

and behavioral characteristics of the overall system and to create a distribution

pattern to meet the specific requirements:

DataDistributionPolicy ¼ DDP

GeoBoundary_DDP,

GBRegion,

Scope(ALL),

Pattern Automatic, Random

DWDDPPattern,

WhiteNoise(),

NULL,

NULL,

NULL,

NULL

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The data replication policy for the commandcontrol loops as illustrated above

shows a low number of replicas per data atom in order to meet the assumptions

DATA GRID ANALYSIS 199

made in the data distribution policy expression:

DataReplicationPolicy¼DRP

GeoBoundary_DRP,

GBRegion,

3,

Scope(ALL)

0

B

B

B

B

B

@

1

C

C

C

C

C

A

SynchronizationPolicy¼ SP

GeoBoundary_SP,

GBRegion,

Scope(Boundary(‘‘inter”),NULL),

Transactionality(‘‘nontransactional”),

LoadStore
List(‘‘DLP_SensorTypeA” , . . .),

List(‘‘DSP_SensorTypeA” , . . .)

 !

,

Events(List(‘‘ENP_SensorTypeA”, . . .))

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Event notification may not be necessary in this application for data gathering;

however, it will prove valuable to notify nodes that there are commands waiting

for them to be read in and acted on:

EventNotificationPolicy¼ ENP

ENP_SensorTypeA,

GBRegion,

Scope(‘‘All”),

SensorCommandFunction()

0

B

B

B

@

1

C

C

C

A

Similar load policies are needed for each sensor type. Only one example is illus-

trated below for all the possible types of sensors:

DataLoadPolicy¼DLP

DLP_SensorTypeA,

GBRegion,

Granularity(Grouping(1),10000),

Adapter(‘‘SensorA-OutputAdapter”)

0

B

B

B

@

1

C

C

C

A

200 COMMAND AND CONTROL

Similar store policies are needed for each sensor type. Only one is illustrated

below for the possible types of sensors:

DataStorePolicy¼DSP

DSP_SensorTypeA,

GBRegion,

Granularity(Grouping(1),10000),

Operation(‘‘store”),

Adapter(‘‘SensorA-InputAdapter”)

0

B

B

B

B

@

1

C

C

C

C

A

. Qos–Application Requirement Quadrant Graph. As can be seen from

Figure 17.5, the command-and-control loop falls into a level 1 zone and is

atomic in nature.

D
a
ta

 g
ri

d
Q

o
S

Application complexity
Work
Time
Data

Transactional

L
e
ve

l 0
L
e
ve

l 1

Atomic

Asynchronous

Static data

Nontransactional

Atomic

Asynchronous

Dynamic data

Nontransactional

Atomic

Asynchronous

Dynamic data

Transactional

Atomic

Asynchronous

Dynamic data

Nontransactional

Figure 17.5. Command and control.

DATA GRID ANALYSIS 201

APPLICATION SPINOFFS

Command and control plays a key role in a compute utility service. In order for a

computer utility service to be effective, the state of the service must meet the

supply-and-demand curves of the user community. As the need for the computer ser-

vices increases, the utility has to be able to adjust to the demand requests by chan-

ging its profile; thus, reallocation of the physical resources is necessary. This implies

that information describing the state of the utility service including user demands is

monitored on a real-time or near-real-time basis. Analysis must be done on this

information and commands must be issued back to the utility service for it to

change its state in a timely fashion in order to meet the demand on the system at

that point in time.

Should the change in state of the utility service lag behind the demand, the utility

service will be put into a state that does not meet the demand of the user community.

If this happens repeatedly, the utility service will move out of a steady-state

condition to one that adversely affects its quality of service to the customer.

A second example is the collection of information from remote devices, where

the analysis needs to be performed in real time. However, no commands are

issued back to the system to change its state; instead the results that have been

analyzed are used elsewhere, for example, by another external system. Weather

monitoring entails the ability to collect data from remote weather stations, analyze

the raw data in near real time, and have the results available to people or other com-

puter systems to generate weather alerts such as tornado and hurricane warnings.

202 COMMAND AND CONTROL

